THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Solution of Tutorial Classwork 0

1. (a) By definition, we have $\emptyset, X \in \mathfrak{T}$.

Pick arbitrary set of elements $\{U_{\alpha}\}_{{\alpha \in I}}$ of $\mathfrak T$. By definition, $X\setminus U_{\alpha}$ is countable for any $\alpha \in I$. Note that $X\setminus(\bigcup_{\alpha\in I}U_{\alpha})=\bigcap_{\alpha\in I}(X\setminus U_{\alpha})$. Since subset of countable set is also countable and $X\setminus(\bigcup_{\alpha\in I}U_{\alpha})\subset X\setminus U_{\alpha_0}$ for some $\alpha_0\in I$, the set $X\setminus(\bigcup_{\alpha\in I}U_{\alpha})$ is countable. Hence $\bigcup_{\alpha\in I}U_{\alpha}\in\mathfrak{T}.$

Pick finitely many elements $\{U_i\}_{i=1}^n$ of \mathfrak{T} . By definition, $X\setminus U_i$ is countable for any $i=$ $1, 2, \ldots n$. Note that $X \setminus (\bigcap_{i=1}^n U_i) = \bigcup_{i=1}^n (X \setminus U_i)$. Since finite union of countable set is also countable, the set $X \setminus (\bigcap_{i=1}^n U_i)$ is countable. Hence $\bigcap_{i=1}^n U_i \in \mathfrak{T}$.

As a result, $\mathfrak T$ is a topology.

- (b) To show that $\mathfrak T$ is not a metric topology, it suffices to show that $\mathfrak T$ is not Hausdorff. Pick any two distinct elements $x, y \in X$. Suppose there exists two open sets U, V such that $x \in U, y \in V$ and $U \cap V = \emptyset$. By definition, $X \setminus U$ and $X \setminus V$ are countable. This implies that $(X\setminus U) \cup (X\setminus V) = X\setminus (U \cap V) = X$ is also countable, contradicting to the fact that X is uncountable. Therefore X is not Hausdorff and it is not a metric topology.
- (c) If X is countable, then every complement of subsets of X are countable. Hence $\mathfrak T$ is the discrete topology. The discrete topology is induced by the discrete metric: $d(x, x) = 0$, $d(x, y) = 1$ for any $x, y \in X, x \neq y$.
- 2. To show that $\mathfrak{T}_d \subset \mathfrak{T}_\rho$, we need to show that for any $U \in \mathfrak{T}_d$, we have $U \in \mathfrak{T}_\rho$. Recall that for metric space, $U \in \mathfrak{T}_{\rho}$ is open if and only if for any $x \in U$, we can find a ball $B_{\rho}(x,\delta)$ for some $\delta > 0$ such that $x \in B_{\rho}(x, \delta) \subset U$.

To find such a ball, pick any $x \in U$. Since $U \in \mathfrak{T}_d$, we can find a ball $B_d(x, \epsilon)$ with $\epsilon > 0$ such that $x \in B_d(x, \epsilon) \subset U$.

Sketch of idea: We want to put a ρ -metric ball $B_{\rho}(x, \delta)$ inside the d-metric ball $B_d(x, \epsilon)$. In other word, we need to show that for any $y \in B_{\rho}(x,\delta)$, we have $y \in B_d(x,\epsilon)$. To show that $y \in B_d(x,\epsilon)$, let's consider $d(x, y)$. Since $d(x, y) \leq k\rho(x, y) < k\delta$ for any $y \in B_\rho(x, \delta)$, if we take $\delta = \epsilon/k$, we have $d(x, y) < \epsilon$. Try to write it down mathematically.

3. (a) It is clear that $\rho(x, y) = 0 \iff x = y$ and $\rho(x, y) = \rho(y, x)$. The triangle inequality follows easily from the triangle inequality of absolute value:

$$
\rho(x, y) = |\tan x - \tan y|
$$

= |(\tan x - \tan z) + (\tan z - \tan y)|

$$
\leq |(\tan x - \tan z)| + |(\tan z - \tan y)|
$$

= $\rho(x, z) + \rho(z, y)$

(b) Since $f'(x) = \sec^2 x - 1 \ge 0$ for any $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, the function $f(x)$ is increasing.

To show that $\mathfrak{T}_d \subset \mathfrak{T}_\rho$, pick any $x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. WLOG assume that $x < y$. By the previous result, we know that $f(x) \leq f(y)$. This implies $y - x \leq \tan y - \tan x$. Hence $d(x, y) \leq \rho(x, y)$. By Exercise 2, we have $\mathfrak{T}_d \subset \mathfrak{T}_\rho$.

To show that $\mathfrak{T}_{\rho} \subset \mathfrak{T}_d$, we want to put a d-metric ball $B_d(x, \delta)$ inside the ρ -metric ball $B_{\rho}(x, \epsilon)$. More precisely, given any $\epsilon > 0$. We need to find $\delta > 0$ such that whenever $y \in B_d(x, \delta)$, i.e. $d(x, y) = |x - y| < \delta$, we have $\rho(x, y) = |\tan x - \tan y| < \epsilon$. Why does this property hold?

(c) (X, d) is incomplete since the Cauchy sequence $\left\{(\frac{\pi}{2} - \frac{1}{n})\right\}_{n \in \mathbb{N}}$ does not converge in the metric d.

For the metric space (X, ρ) , given any Cauchy sequence $\{x_n\}_{n\in\mathbb{N}}$ in ρ , the sequence $\{\tan x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in the standard metric. By completeness of \mathbb{R} , we know that the sequence $\tan x_n \to L \in \mathbb{R}$ as $n \to \infty$. Hence we have $x_n \to \tan^{-1} L \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and (X, ρ) is complete.

(d) Sketch of idea: From (c), the reason why the open subset $(-\frac{\pi}{2}, \frac{\pi}{2})$ is incomplete is that the boundary point is removed. So whenever a Cauchy sequence approaching to the boundary, it must diverge. To fix this problem, we would like to define a metric which enlarges the distance around the boundary points (compare $\left|\left(\frac{\pi}{2} - \frac{1}{n}\right) - \left(\frac{\pi}{2} - \frac{1}{m}\right)\right|$ and $\left|\tan\left(\frac{\pi}{2} - \frac{1}{n}\right) - \tan\left(\frac{\pi}{2} - \frac{1}{m}\right)\right|$ for large m, n). In particular, if we can measure the distance from a point $x \in A$ and the boundary, then the reciprocal of this distance is what we want.

The "distance from a point x to the boundary" can be defined by

$$
d(x, X \backslash A) = \inf_{z \in X \backslash A} d(x, z)
$$

One clever definition of the desired metric is given by

$$
\tau(x,y) = d(x,y) + \left| \frac{1}{d(x,X \backslash A)} - \frac{1}{d(y,X \backslash A)} \right|
$$

Try to show that this metric satisfies the required property.