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By definition, we have 0, X € ¥.

Pick arbitrary set of elements {U, }oer of T. By definition, X\U, is countable for any « € I.
Note that X\(U,c; Ua) = Naer(X\Ua). Since subset of countable set is also countable
and X\(U,c;Ua) C X\Uy, for some ag € I, the set X\(J,c; Ua) is countable. Hence
Uacr Ua € T

Pick finitely many elements {U;}?_; of T. By definition, X\U; is countable for any i =
1,2,...n. Note that X\(N;_, U;) = U;—,(X\U;). Since finite union of countable set is also
countable, the set X\ (N}, U;) is countable. Hence (;_, U; € <.

As a result, T is a topology.

To show that ¥ is not a metric topology, it suffices to show that ¥ is not Hausdorff. Pick
any two distinct elements x,y € X. Suppose there exists two open sets U,V such that
z €Uy e Vand UNV = ). By definition, X\U and X\V are countable. This implies
that (X\U) U (X\V) = X\(UNV) =X is also countable, contradicting to the fact that X is

uncountable. Therefore X is not Hausdorff and it is not a metric topology.

If X is countable, then every complement of subsets of X are countable. Hence ¥ is the discrete
topology. The discrete topology is induced by the discrete metric: d(x,z) =0, d(x,y) = 1 for
any z,y € X,z # y.

2. To show that T4 C ¥,, we need to show that for any U € %4, we have U € T,. Recall that for

metric space, U € T, is open if and only if for any « € U, we can find a ball B,(x,d) for some
0 > 0 such that = € B,(z,0) C U.

To find such a ball, pick any x € U. Since U € T4, we can find a ball By(z, €) with € > 0 such that
x € By(z,e) CU.

Sketch of idea: We want to put a p-metric ball B,(z,0) inside the d-metric ball B4(x,€). In other
word, we need to show that for any y € B,(x,d), we have y € Bg(x,¢€). To show that y € By(z,¢€),
let’s consider d(z,y). Since d(x,y) < kp(z,y) < kd for any y € B,(z,¢), if we take § = €¢/k, we
have d(z,y) < e. Try to write it down mathematically.



3. (a) It is clear that p(z,y) =0 <= =z =y and p(z,y) = p(y,z). The triangle inequality follows

easily from the triangle inequality of absolute value:

p(z,y) = [tanz — tany|
= |(tanx — tan z) + (tanz — tany)|

< |(tanz — tan z)| + |(tan z — tany)|

= pla,2) + plz,y)

(b) Since f'(z) =sec?z —1 >0 for any z € (—%, %), the function f(z) is increasing.

To show that T4 C T, pick any z,y € (=5, 5). WLOG assume that 2 < y. By the previous
result, we know that f(z) < f(y). This implies y —x < tany — tanz. Hence d(z,y) < p(z,y).
By Exercise 2, we have Ty C T,,.

To show that T, C T4, we want to put a d-metric ball Bg(x, ) inside the p-metric ball B, (z, €).
More precisely, given any € > 0. We need to find § > 0 such that whenever y € By(z, ), i.e.
d(z,y) = |z — y| < 4, we have p(z,y) = |tanx — tany| < e. Why does this property hold?

(¢) (X,d) is incomplete since the Cauchy sequence {(3 — )}
d.

neN does not converge in the metric

For the metric space (X, p), given any Cauchy sequence {z,, }»en in p, the sequence {tanz,}, o

is a Cauchy sequence in the standard metric. By completeness of R, we know that the se-

quence tanz, — L € R as n — oo. Hence we have z,, — tan™ 'L € (=5, %) and (X, p) is

complete.

(d) Sketch of idea: From (c), the reason why the open subset (—7, %) is incomplete is that the

boundary point is removed. So whenever a Cauchy sequence approaching to the boundary, it
must diverge. To fix this problem, we would like to define a metric which enlarges the distance

around the boundary points (compare |(3 — 1) — (3 — L)| and [tan (5 — 1) —tan (3 — L)

for large m,n). In particular, if we can measure the distance from a point z € A and the

boundary, then the reciprocal of this distance is what we want.

The “distance from a point x to the boundary” can be defined by

d(x, X\A) = Zé?({A d(x, 2)

One clever definition of the desired metric is given by
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Try to show that this metric satisfies the required property.



